Menchero Linking¶
1. Calculation Name¶
Menchero Logarithmic Linking for Active Attribution
2. Description and Mathematical Formula¶
The Linking (Menchero) plugin also works with one effect stream at a time. Instead of logarithms it uses Menchero’s geometric-to-arithmetic adjustment:
- For each period compute the active return \( a_t = r^P_t - r^B_t \)
- Compute the scaling coefficient
[ k^{\text{Menchero}}_t = \frac{(1 + r^P_t)/(1 + r^B_t) - 1}{a_t} ] (defaults to 1.0 when \( a_t \) is effectively zero) - Pre-scale the effect: \( \tilde{E}_t = E_t \times k^{\text{Menchero}}_t \)
- Compute the cumulative active return
\( R^{\ast} = \prod_t (1 + r^P_t) / \prod_t (1 + r^B_t) - 1 \) - Apply horizon scaling \( \lambda = R^{\ast} / \sum_t \tilde{E}_t \) and report
\( E^{\text{linked}}_t = \tilde{E}_t \times \lambda \)
This produces linked effects that reconcile to the geometric excess return with the same pipeline used in the desktop UI.
3. Input Sample Data¶
| Month | Portfolio Return | Benchmark Return | Effect (bps) |
|---|---|---|---|
| Jan | 2.50% | 2.20% | 30 |
| Feb | 1.80% | 1.50% | 30 |
| Mar | -0.50% | -0.80% | 30 |
Again, run the plugin separately for Allocation, Selection, Interaction, or any other effect stream.
4. Mathematical Solution¶
- Menchero coefficients:
\( k_{\text{Jan}} = 0.978474 \)
\( k_{\text{Feb}} = 0.985222 \)
\( k_{\text{Mar}} = 1.008065 \) - Scaled effects:
Jan \( = 30 \times 0.978474 = 29.35 \) bps
Feb \( = 30 \times 0.985222 = 29.56 \) bps
Mar \( = 30 \times 1.008065 = 30.24 \) bps - Cumulative active return \( R^{\ast} = 8.9418\% \)
Scaling factor \( \lambda = 1.002974 \) - Linked effects:
Jan \( = 29.35 \times \lambda = 29.44 \) bps
Feb \( = 29.56 \times \lambda = 29.64 \) bps
Mar \( = 30.24 \times \lambda = 30.33 \) bps
Total linked active \( = 89.42 \) bps (equals \( R^{\ast} \) within rounding).
5. Sample Python and R Code¶
portfolio = [0.025, 0.018, -0.005]
benchmark = [0.022, 0.015, -0.008]
effect = [0.003, 0.003, 0.003]
ks = []
scaled = []
for rp, rb, eff in zip(portfolio, benchmark, effect):
active = rp - rb
numerator = (1 + rp) / (1 + rb) - 1
k = numerator / active if abs(active) > 1e-12 else 1.0
ks.append(k)
scaled.append(eff * k)
cum_port = 1.0
cum_bench = 1.0
for rp, rb in zip(portfolio, benchmark):
cum_port *= 1 + rp
cum_bench *= 1 + rb
cum_active = cum_port / cum_bench - 1
link_scale = cum_active / sum(scaled)
linked = [s * link_scale for s in scaled]
print("k:", [round(k, 6) for k in ks])
print("scaled_bps:", [round(s * 10000, 2) for s in scaled])
print("linked_bps:", [round(l * 10000, 2) for l in linked])
print("total_active_bps:", round(sum(linked) * 10000, 2))
portfolio <- c(0.025, 0.018, -0.005)
benchmark <- c(0.022, 0.015, -0.008)
effect <- c(0.003, 0.003, 0.003)
k <- mapply(function(rp, rb) {
active <- rp - rb
numerator <- (1 + rp) / (1 + rb) - 1
if (abs(active) < 1e-12) 1 else numerator / active
}, portfolio, benchmark)
scaled <- effect * k
cum_port <- prod(1 + portfolio)
cum_bench <- prod(1 + benchmark)
cum_active <- cum_port / cum_bench - 1
link_scale <- cum_active / sum(scaled)
linked <- scaled * link_scale
round(k, 6)
round(scaled * 10000, 2)
round(linked * 10000, 2)
round(sum(linked) * 10000, 2)
6. Output Table¶
| Month | \( k^{\text{Menchero}}_t \) | Scaled (bps) | Linked (bps) |
|---|---|---|---|
| Jan | 0.9785 | 29.35 | 29.44 |
| Feb | 0.9852 | 29.56 | 29.64 |
| Mar | 1.0081 | 30.24 | 30.33 |
| Total | — | 89.15 | 89.42 |
7. Conclusion¶
Menchero scaling in FinFacts adjusts each period’s arithmetic effect so the linked series matches the cumulative excess return. Use this workflow when you need Menchero-style linking but only have a single calculated effect column at a time.